ORNL Sep 2008 AD for Scale 1

4)

‘ AD for Scale I

Jean Utke / Paul Hovland

Argonne

NATIONAL
LABORATORY

e motivation
e basic ideas

e OpenAD/F information

e strategies and concerns

e outlook
UChicago » P7%5 Office of
A rgo n n e LLC U.S. DEPARTMEi?F’g::G?e

o _/

Utke Argonne

ORNL Sep 2008 AD for Scale 2

/ ‘The case for source transformation ADI \

e the major advantages of AD are ... no need to repeat again

e source transformation AD
— complexity of the tools (vs. operator overloading) ®

— efficiency gains ©

e efficiency gains from source transformation AD come from
— activity analysis
— optimizing combinatorial problems at compile time
— for reverse mode: high-level structural allows explicit control flow

reversal

e forward mode source transformation considerably less complicated than

reverse mode source transformation

\VV hat is relevant for SCALE? /

Utke Argonne

ORNL Sep 2008 AD for Scale

3

Is activity analysis likely to help?

e.g. want derivatives for subset of model data & routines

/ The model source code impacts AD capabilities' \

if no and only forward mode = consider operator overloading facilitated by

a glOba]. type Change (btw - this already implies a bit of source transformation, see NEOS @)

if yes:

activity analysis based on data flow analysis -
supply the (entire) model source code (can have stubs)

split sources to filter out ancillary logic (monitoring, debugging, timing, 1/0)

to reduce conservative overestimate

semantically ambiguous data (union, equivalence)

= overestimated active set

integrate the AD tool chain into the build process

\ control flow and some data access patterns (e.g. linked lists), etc.

e Will I need reverse mode, e.g. for gradients? If yes - avoid unstructured

_/

Utke

Argonne

ORNL Sep 2008 AD for Scale 4

/ OpenAD General I \

1
Opensa) front — ends(gpg
whirl Sages
A A
\
e www.mcs.anl.gov/OpenAD {CpenAD/HOpen | L (SageTT
e forward and reverse FortTk Analysis [| XAIF

e currently first order
Angel A\ |

e source transformation i xaifBooster ;
(n

ﬁxerces} 3 AD source transformatio

e large problems

e Fortran(90) side of a multi language Fortran pipeline:

design

e under development

whirl2xaif |-=

] xaif2whirl

xaifBooster

Utke Argonne

OpenAnaIysis]

ORNL Sep 2008 AD for Scale 5

/ OpenAD example' \
SUBROUTINE head (X, Y)

use w2f__types

subroutine head(x,y) use active_module
double precision,intent(in) :: x IMPLICIT NONE
double precision,intent(out) :: y ||REAL(w2f__8) OpenAD_Symbol_0O
y=sin(x*x) e
end subroutine REAL (w2f__8) OpenAD_Symbol_5

result of pushing it through the pipeline — type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
program driver OpenAD_Symbol_0 = (X%v*X/v)
use active_module Y/v = SIN(OpenAD_Symbol_0)
implicit none OpenAD_Symbol_2 = XJv
external head OpenAD_Symbol_3 = X%v
type(active):: x, y OpenAD_Symbol_1 = COS(OpenAD_Symbol_0)
x%v=.5D0 OpenAD_Symbol_5 = ((OpenAD_Symbol_3 +
x%d=1.0 OpenAD_Symbol_2) * OpenAD_Symbol_1)
call head(x,y) CALL sax(OpenAD_Symbol_5,X,Y)
print *, "F(1,1)=",y%d RETURN

\\\ind program driver END SUBROUTINE 44///

Utke Argonne

ORNL Sep 2008 AD for Scale 6

4 A
‘on the Website'

www.mcs.anl.gov /openad

e more examples

e instructions to download & build
e source code documentation

e revision history

e bibliography

o wiki

e bug tracker

Utke Argonne

ORNL Sep 2008

AD for Scale 7

/

N

‘ active type I

by address (active type): by name (shadowing variables):

XATIF has discriminator flag (original
vs. augmenting)

XAIF does not need to know about
user def’d types

unparsing according to discriminator

type in runtime library, not part of
FE, except for member names

14

readily supported “everywhere” ex-

cept F77.

impacts i/o and memory manage-
ment! (netcdf and fotran i/o)

used by all F77 tools (no user def’d types)

original data retains size, leaving memory allocation
schemes and i/o formats undisturbed

augmenting data can be allocated and managed in-
dependently from the original data

in a language with user def’d types (requires XAIF
to know user-def’d types):
— All active variables have to be shadowed.

— All subroutine signatures need to be expanded to
contain the shadowing variables.

— user defined types containing shadowed variables
have to have shadow types (recursively) to main-
tain data separation.

— Variables of shadowed types have to be shadowed.

— Variables pointing to shadowed variables have to
be shadowed (recursively) to properly replicate

_/

pointer arithmetic.

Utke

Argonne

ORNL Sep 2008 AD for Scale 8

/ ‘computational graphs in OpenADI \

Utke Argonne

ORNL Sep 2008 AD for Scale 9

‘observations for CENTRM'

e top level routine CALC

e identify independents (xmd) and dependents (pxj)

e filter out source files with code not called under CALC

— excludes 58 of 148 files (4121 interface files)
— e.g. the AD driver logic in the code calling CALC

e references files from scaleLib; mostly treated as black-box routines
(except 10 files + 9 stubs)

e CALC allocates/deallocates dynamic memory (for reverse?)
e handling of read_scratch() and write_scratch() e.g. via wrappers

e processed files need to be ordered (currently fixed based on make output)

o _/

Utke Argonne

ORNL Sep 2008 AD for Scale 10

observations for PMC'

e revealed an Open64 front-end bug, now fixed

e top level routine process

e independents pnt_flx initialized by read_transfer_parameters()
e transfer of derivatives from CENTRM in flxrec.f90

e dependents (grp_xs_new and grp_xs_2(7) see xscal.f90)

o filter out 9 of 30 source files with code not called under process

e include 9 file from scalelib

e processed files need to be ordered (currently fixed based on make output)

\ _/

Utke Argonne

ORNL Sep 2008 AD for Scale 11

‘suggestions for source code'

e make source separation easy (for the build process)

— one method per file or file contents aligned with separation

— extract setup (initialization, allocation, ...) and cleanup (deallocation,

result output) logic from computation under CALC
— factor out low level 1/0

— for modules - separate data (module variables) and interfaces from

implementation (if impossible use stubs)
e avoid equivalence
e avoid gratuitous use of pointers

e avoid gratuitous local memory (de)allocation (e.g. in pxarr for pei).

o _/

Utke Argonne

ORNL Sep 2008 AD for Scale 12

4 N
Language Coverage I

e array operations

e TRANS SUM DMIN AIMAG ALOG (now added)

e complex arithmetic & intrinsics in bn, fabcz, qol, qratio, trisol
e function to subroutine canonicalization

e except special functions with closed form partials (e.g. ki3, e3)

e question if ki3 should be differentiated (doesn’t appear to be covered by
GRESS)

e question if the GRESS generated e3g is or should be called

e files reads with implied do loops, found in epitoth

Utke Argonne

ORNL Sep 2008 AD for Scale 13

4)

‘conﬁgurable sources and AD transformation'

e often AD tool part of the build process
e ok for precompiled distribution

e not ok with configurable sources (e.g. preprocessor) because AD

transformation is done per configuration

e front-end even performs constant folding for PARAMETER quantities

Utke Argonne

ORNL Sep 2008 AD for Scale 14

4)

Further Information I

e A. Griewank, Fvaluating Derivatives, STAM, 2000.

e A. Griewank, On Automatic Differentiation; this and other technical
reports available online at:

http://www.mcs.anl.gov/autodiff/tech_reports.html

e AD in general: http://www.autodiff.org/ ADIFOR:
http:/ /www.mcs.anl.gov /adifor/ ADIC: http://www.mcs.anl.gov/adic/
OpenAD: http://www.mcs.anl.gov/openad/ Other tools:
http://www.autodiff.org/

\ _/

Utke Argonne

ORNL Sep 2008

AD for Scale

15

control flow reversal'

7:EBranch

(b) 1:Entry (©) —]_’I.:Iintry
2:Bb -10:Bb
v v
12*:Bb 12*:Bb
1:Entry) + +
‘ 3:Loop -9:ForLoop
2:Bb ! l 1
+ 4:Branch 13*:Bb
-8:Bb -2:Bb
3:Loop / Lo l * +
ﬂ l 5:Bb 6:Bb 10:Bb 13*'Bb -1:Exit
10:Bb y) v .
L 14*:Bb 15*:Bb 11:Exit _7Branch
11:Exit 7:EBranch JO \&
-6:Bb -5:Bb
8:Bb
X ﬁJ—
16*'Bb -4:EBranch /
/ </ ~
9:ELoop 9:Eloop -3:ELoop

Utke

Argonne

ORNL Sep 2008

AD for Scale

16

-

subroutine level granularity

Y
Y
A

‘OpenAD reversal modes'

Y
A

1 1 1 1 1
> - Iy - - -)
2 2 2 2 2 2
| \ -¢ | -¢
3 3| 4,3 3 3 3
call tree joint mode call tree split mode call tree
Utke Argonne

ORNL Sep 2008 AD for Scale 17

/ ADified Shallow Water Call Graph' \

shallow_water

read_eta data map_to_control_vector length_of _control_vector

make_weights_zonal_transport make_weights_graddepth
make_weights |apldepth forward_model

map_from_control_vector initial_values calc_depth_uv calc_zonal_transport_joint

make_weights_depth

loop_body_wrapper_outer

l

loop_body_wrapper_inner

T

time_step cost_function

umomentum vmomentum continuity read_data is _eta data time calc_zonal_transport_split

read_data file

e calc zonal _transport is split

e nested loop checkpointing in outer and [inner loop body wrapper

\o inner loop body in split mode /

Utke Argonne

ORNL Sep 2008

AD for Scale

18

-

OpenAD reversal modes with checkpointing'

subroutine level granularity

y

f f
- - \ - -¢
! ol I 02 02 02
> - > - - - Iy - - I - -
11 12 13 14 13 14 14 14 13 13
plain mode split mode

N

Utke

Argonne

ORNL Sep 2008 AD for Scale 19

‘summary OpenAD features'

e climination techniques

— vertex, edge, face
— various heuristics

— DAG per statement or basic block
e anonymous control flow graph reversal, “simple” loop designation
o flexibility & reversal schemes via templates/inlining
e constant folding

e OpenAnalysis integration

Utke Argonne

ORNL Sep 2008 AD for Scale 20

/‘ example - how do directional derivatives come about? I\

f:y=sin(axb)*xc

yields a graph representing the order of computation:

e intrinsics ¢(...,w,...) have local partial derivatives

99
ow

e c.g. sin(tl) yields cos(tl)
e code list— intermediate values t1 and t2

e all others already stored in variables

tl = a*b
pl = cos(tl)

t2 = sin(t1l)
y = t2x%c

\VV hat can we do with this? /

Utke Argonne

ORNL Sep 2008 AD for Scale 21

/ ‘forward with directional derivatives' \

flg(x)) = f(g(x))g(x)a: multiplications along paths

Assume a point (ag, by, ¢o) and a direction (&, b, ¢) =(d_a,d_b,d_c)

variable and directional derivatives associated in pairs (v,d_v):
d_axb*pl*xc+d_b*axpl*xc+d_c*xt2

has common subexpressions

interleave computations of directional derivatives
tl = axb
d_tl = d_axb + d_bx*a
pl = cos(tl)
t2 = sin(t1)
d_t2 = d_tl1*pl
y = t2%cC

d_y = d_t2*xc + d_c*t2

\W hat is in d_y? /

Utke Argonne

ORNL Sep 2008 AD for Scale

22

~

‘forward with directional derivatives II'

o if (a,b,¢) = (1,0,0) then d_y=2L (ag, by, co)

tl = axb

d_tl = d_axb + Oxa
pl = cos(tl)

t2 = sin(tl)

d_t2 = d_tlx*xpl

y = t2%cC

d_t2*c + O0xt2

d_y

e 3 directions give V f(ag, by, cg) and
dy=VfT(a,b,¢) =V T

e gradient calculation cost ~ n

N

e floating point accuracy for derivative calculation !

_/

Argonne

ORNL Sep 2008 AD for Scale 23

Tangent-linear Models I

The tangent-linear model of

F:R"—-R", y=F(x)
1S

F:R"™ S R™ y=Fxx)=F(x) x%x.

n q

Jacobian matrix 0
1

j=1,....m m = 0

1 [Oy T

Fl=(Ge) T = F, 0
1=1,....,n 0

0

column by column at O(n). 0
0

o _/

Utke Argonne

ORNL Sep 2008 AD for Scale

24

/ ‘ sparse Jacobians I

many repeated Jacobian vector products — compress the Jacobian
F'.S =B e R™*? using a seed matrix S € R"*?
What are S and ¢?

Row i in F’ has p; nonzeros in columns v(1),...,v(p;)

choose S so we can solve:
gz'Oé = [
with Sg — (31)(1)7 Ce S,U(pi))

o ar S

\ v (1) v(2) v(3)

F! = (ai,...,a,,) = al and the compressed row is B; = (31,...,0,) = 81 We

Utke

Argonne

ORNL Sep 2008 AD for Scale 25

4 N
‘determining q,S (1) I

e Curtis/Powell /Reid: structurally orthogonal

direct:

e Coleman/Moré: column incidence graph coloring)

q is the color number in column incidence graph, each column in .S represents a

color with a 1 for each entry whose corresponding column in F” is of that color.

_.. 1 0
B @5_01
10

0 1

E B
- HE @

reconstruct F’ by relocating nonzero elements (direct)

o _/

Utke Argonne

ORNL Sep 2008 AD for Scale

26

/ ‘determining q,S (2) I

indirect:

e Newsam/Ramsdell: ¢ = max{#nonzeros} < x

e S is a (generalized) Vandermonde matrix [)\‘Z _1} , j=1...q,

e How many different A\; 7

same example

[VAP
2
1 HEER ®
E B ISt
- HE VRV @)

all combinations of columns (= rows of S): (1,2),(2,3), (1,4)
anroved condition via generalization approaches

i # At

Utke

ORNL Sep 2008

AD for Scale

27

~

3 colors

QN

but with A € —1,0,1

‘example with a difference'

o o o o

o o o o

O Q. O

o O Q O

o v O O

S s O O

_ = =

o o O =

O = = O

_ O O O

e O Q <o

Utke

Argonne

ORNL Sep 2008 AD for Scale

28

/ tool support (1)'

all tools: seeding & vector mode (forward)

Adifor:
e SparsLinC library
e pattern detection
e sparse forward propagation
Adol-C:
e pattern detection via bitmap propagation

e (dense) forward propagation

\VVhat about

Utke

ORNL Sep 2008 AD for Scale 29

reverse with adjoints'

Assume variable and adjoints associated in pairs (v,g_v):

Q append computations of adjoints

tl = axb

pl = cos(tl)

t2 = sin(t1)

y = t2x%c

g_Cc = g_y*t2

g_t2 = g_y*c

g_tl = g_t2xpl

g_b = g _tlxa

g_a = g_tlxb

What is in (g_a,g b,g.c)? If g_.y=1, then V f(aq, bo, co)

\ _/

Utke Argonne

ORNL Sep 2008 AD for Scale

30

/ Adjoint Models I

The adjoint model of

1S
F:R" - R", x=Fkxy)=Fx" 3.

Jacobian matrix

NJ=1L,....m
= (8%) :<F/)T_[m

83:1- .
1=1,...,n

row by row at O(m) (cheap gradients ®, tape intermediates / partials @)

n
= oo i

m

o

_/

Utke Argonne

ORNL Sep 2008

AD for Scale

31

~

compress the Jacobian:

incidence graph.

sparse Jacobians (2) I

F'T.§ = B e R"*P with a seed matrix S € R™*P:

Here ¢ as maximal number of nonzeros in columns, or color number in row

O]
O O
O O
o) nm
Combination through partitioning (Coleman/Verma): @E® .- - BRG]
e forward sweep with
=2 - i B 0 - H
e reverse sweep with = = 0 L
p=1 F’ I and F'T| : :
= = 0 O
| N SSH_ 1 e
Utke

ORNL Sep 2008 AD for Scale

32

~

tool support (2)'

row compression / partitioning require reverse mode!
OpenAD /Tapenade/Adifor (v3.0):

e reverse mode

Adol-C:

e dependency propagation

e dynamic dependency kind estimation (none, linear, polynomial, rational,

transcendental, non-smooth)

We care, e.g. because of partial separability!

e reverse mode yields cheap gradient ... at a considerable cost.

e forward takes O(n) but sparse Hessian indicates

f(x) = Zaifi(xi) where x; Cx sothat Vf, ¢ R",n; <<n

7

_/

Argonne

ORNL Sep 2008 AD for Scale 33

/ higher order I \

sparse tool support: (Adifor: hessian module) Adol-C:

e hessian driver: n Hessian-vector products (one reverse after one forward
each)

e hessian2 driver: Hessian-matrix product (one reverse after one vector
forward)

e generally: univariate Taylor series up to an arbitrary degree (~ Rapsodia)

efficient Hessians subject of current research

higher order tensors:
e multivariate (direct ©, coefficient management ®) COSY INFINITY
e univariate (one coefficient per degree ®, interpolation ®) Adol-C/Rapsodia

COSY INFINITY: specialized, offers tight inclusion via remainder term

\intervals /

Utke Argonne

ORNL Sep 2008 AD for Scale 34

/ non-smooth models ' \

caused by:
e intrinsics (max, ceil, sqrt,...)
e branches if (x<2.5) y=f1(x); else y=£f2(x);
e can cause seemingly erratic derivatives glossed over by FD
e approximate step lengths in linear model
e explicit g-stop facility using high order expansion
we assume fixed parameters!
e Adifor: catches all intrinsic problems via optional exception handling

e Adol-C: taping mechanism and intrinsic handling catches all non-smooth
crossings; uses =INF and NaN

\o ATOMEFT (g-stop), Tapenade (experimental estimator)

_/

Utke Argonne

ORNL Sep 2008 AD for Scale 35

/ distinction ' \

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs) or discontinuity
(ceil)

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition) — potentially

discontinuous

-1 arithmetic comparison yields a different value than before — sparsity structure
may have changed

taping point

Utke Argonne

ORNL Sep 2008

AD for Scale

36

Speelpenning example y = [x;

double *x = new doublel[n];
double t = 1;

double y;

for(i=0; i<n; i++) {

x[i] = (i+1.0)/(2.0+i);

/ Adol-C - general'

e www.math.tu-dresden.de/~adol-c
e operator overloading creates an execution trace (also called 'tape’)

e cxecution trace is the function representation for all drivers

adouble *x = new adouble[n];
adouble t =1

double y;

trace_on(1);

for(i=0; i<mn; i++) {

x[i] <<= (i+1.0)/(2.0+1i);

t *= x[i]; t x= x[i];
} }
y = t; t >>=vy;
delete[] x; delete[] x;
\\\‘ trace_off () ;
Utke Argonne

ORNL Sep 2008

AD for Scale

37

~

in C++:

struct Afloat{float v; float d;};

Afloat operator *(Afloat a, Afloat b)
Afloat r; int i;
r.v=a.vxb.v; // value
r.d=a.d*xb.v+a.vxb.d; // derivative

return r;

Operator Overloading =

\

simple overloaded operators for a*b'

in Fortran:

module ATypes
public :: Areal
type Areal
sequence
real :: v
real :: d
end type
end module ATypes

module Amult
use ATypes
interface operator (*)

module procedure multArealAreal

end interface
contains

function multArealAreal(a,b) result(r)
type(Areal) ,intent(in)::a,b
type(Areal)::r
rhv=alvxblv ! value
rd=ald*bjv+alv blv ! derivative

end function multArealAreal

end module Amult

A simple, relatively unintrusive way to augment semantics via a type change!

_/

Utke

Argonne

ORNL Sep 2008 AD for Scale 38

4 N
Adol-C tape I

e tape consists of records containing

— op code

— result location

— argument location(s)

— constant argument value

— indicator for boolean value, integer results (branches, max, ceil, ...)
e forward and reverse interpret the tape
e look at examples/speelpenning.cpp using gradient and hessian
e look at the 8 page short reference for parameter values

e | experimental tapeless forward

Utke Argonne

ORNL Sep 2008 AD for Scale 39

4 N
‘Adol—C tape size'

e in examples/additional_examples/speelpenning

e observe tape and value stack sizes with n = 10, 1000, 10000
e estimating storage requirements using tape_stats

e look at execution times (100 computations for n = 10000)
e tape size ~ execution time

e loop unrolling

e larger problems require checkpointing

e manual checkpointing, e.g. for time stepping scheme

e some improvements are under development

Utke Argonne

ORNL Sep 2008 AD for Scale

40

‘ Adol-C sparsity I

sparsity pattern detection

e safe and tight mode, think
P(max(a,b))=P(a) |P(b) VS. P(max(a,b))=P(a) if max(a,b)==a

e propagation of unsigned longs
e forward or reverse

e convoluted example code in examples/additional _examples/sparse

e c.g. choice -4 with an arrow-like structure (non-negative numbers indicate the use of a

test tape)

e possibility of collecting entries into blocks of rows and columns for (cheaper) block wise

propagation using jac_pat
— -1: contiguous blocks
— -2: non-contiguous blocks

— -3: one block per variable (as in -4)

e see also User Guide pp. 31 and pp. 42

_/

Utke

Argonne

ORNL Sep 2008 AD for Scale 41

/ ‘ Adol-C dependencies I \

e example code in examples/odexam. cpp

e ths R® — R’

yprime[0] = -sin(y[2]) + 1.0e8xy[2]*(1.0-1.0/y[0]);
yprime[1] = -10.0%y[0] + 3.0e7xy[2]*(1-y[1]);
yprime[2] = -yprime[0] - yprime[1];

e uses active vector class adoublev (there is also an active matrix class

adboublem and along for active subscripting, see examples/gaussexam.cpp)

e forode/accode: generate Taylor coefficients and Jacobians for
x'(t) = F(z(t)), see User Guide pp. 25

® nonzero pattern:

3 -1 4
1 2 2
3 2 4

4 = transcend , 3 = rational , 2 = polynomial , 1 = linear , 0 = zero
\\\\; negative number k indicate that entries of all B_j with j < -k vanish 4///

Utke Argonne

ORNL Sep 2008

AD for Scale

42

adouble foo(adouble x) {
adouble y;
if (x<=2.5)
y=2*fmax(x,2.0) ;
else
y=3*floor (x) ;

return y;

¥

e tape at 2.2 and rerun at
— 2.3 —3
— 2.0 —1
— 2.5 —0
— 2.6 — -1
e tape at 3.5 and rerun at
— 3.6 — 3
— 4.5 — 2
— 2.5 — -1

e necessary safety measure for

\\\\¥ tape correctness

/ ‘ Adol-C non-smooth I

#include "adolc.h"

adouble foo(adouble x);

int main() {
adouble x,y;
double xp,yp;
std::cout << " tape at: " ;
std::cin >> xp;

trace_on(1);

X <<= Xp;
y=foo(x);
y >>= yp;

trace_off();

while (true) A
std::cout << "rerun at: ";
std::cin >> xp;
int rc=function(1,1,1,&xp,&yp);

std::cout << "return code: " << rc << std::endl;

}

_/

Utke

Argonne

ORNL Sep 2008

AD for Scale

43

-

‘Adol-C directional derivatives & exceptions'

tape at 1.0 and rerun at
e 0.5, xdot=1.0 — ydot=3
e 0.0, xdot=1.0 — ydot=3
e 0.0, xdot=-1.0 — ydot=-2
e -0.5, xdot=1.0 — ydot=2

tape at 1.0 and rerun at
e 0.5, xdot=1.0 — ydot=.707107
e 0.0, xdot=1.0 — ydot=INF
e 0.0, xdot=-1.0 — ydot=NaN

o

adouble foo(adouble x) {
adouble y;
y=fmax (2*x,3*x) ;

return y;

}

adouble foo(adouble x) {
adouble y;
y=sqrt (x) ;
return y;

}

Utke

Argonne

ORNL Sep 2008 AD for Scale 44

4)

‘ Adol-C Miscellaneous '

e various drivers

e tape dumping tool

e tapeless forward

e tape compression through (manual) loop identification

e non-persistent tape format

Utke Argonne

